""" This module processes Wikipedia dump files by extracting individual articles and parsing them into a structured format, making them easier to work with for downstream tasks like data analysis, machine learning, or further processing. ### Overview: - The script primarily handles Wikipedia dump files (large archives) and facilitates the extraction of individual Wikipedia articles from these dumps. - After extraction, the articles can be parsed and converted into JSON files, which include metadata and structured content such as sections, links, and categories. ### Commands: 1. **`extract`**: Extracts articles from a Wikipedia dump file. - **Usage**: ``` python script_name.py extract[OPTIONS] ``` - **Arguments**: - `dump_file`: Path to the Wikipedia dump file. - `output_dir`: Directory where the extracted articles should be saved. - **Options**: - `--force`: Overwrite existing files if they already exist. - `--max-pages`: Limit the number of pages to extract. - **Description**: This command reads the Wikipedia dump file and extracts each article into a separate file. Each file contains a JSON metadata header and the article's mediawiki markup. Files are organized into buckets to avoid overloading directories with too many files. 2. **`parse`**: Parses the extracted articles into a structured JSON format. - **Usage**: ``` python script_name.py parse [OPTIONS] ``` - **Arguments**: - `input_dir`: Directory containing the extracted articles. - `output_dir`: Directory where the parsed JSON files should be saved. - **Options**: - `--max-articles`: Limit the number of articles to process. - `--processes`: Number of parallel processes to use. - `--force`: Overwrite existing files if they already exist. - **Description**: This command processes the extracted articles, converting them into JSON files that are more structured and easier to work with. The JSON files include metadata, section information, and links, making it straightforward to use the data in downstream tasks. ### Why: This module is designed to facilitate the processing of large Wikipedia dump files. By extracting and parsing articles into a structured format, it enables easier and more efficient analysis, search, and manipulation of Wikipedia content. This is particularly useful for research, building knowledge graphs, or any application that requires access to structured data from Wikipedia. """ import mwxml # To extract the pages import os from tqdm import tqdm from pathlib import Path from slugify import slugify # To normalize to filenames from hashlib import md5 import json import click from pathlib import Path import mwcomposerfromhell # mediawiki markup to html import mwparserfromhell # Parse the mediawiki markup import re from multiprocessing import Pool from rich import print @click.group() def cli(): """Command-line interface for processing Wikipedia dump files.""" pass def save_page(page, output_dir: Path, force=False): """ Saves an extracted Wikipedia page to a file with metadata. Parameters ---------- page : mwxml.Page A page object extracted from the Wikipedia dump using mwparserfromhell. output_dir : Path The directory where the page will be stored. force : bool, optional If True, overwrite existing files. Default is False. Notes ----- The file is saved in a subdirectory based on a hash of the title to avoid creating too many files in a single directory. The first line of the file contains metadata in JSON format, and the remainder is the mediawiki markup. """ title = slugify(page.title) bucket = md5(title.encode('utf-8')).hexdigest()[:3] file_name = f"{title}.wiki" file_path = Path(output_dir) / bucket / file_name if file_path.exists() and not force: return file_path.parent.mkdir(parents=True, exist_ok=True) revision = None for rev in page: revision = rev break # Take the first revision if revision is None: print(f"Skipping page '{title}' because no revisions are found.") return metadata_str = json.dumps({ 'title': page.title, 'bucket': bucket, 'file_name': file_name, 'info': page.to_json() }) with open(file_path, 'w', encoding='utf-8') as f: f.write(metadata_str + '\n' + revision.text) @cli.command() @click.argument('dump_file', type=click.Path(exists=True, path_type=Path, dir_okay=False)) @click.argument('output_dir', type=click.Path(exists=True, path_type=Path, dir_okay=True, file_okay=False)) @click.option('--force', is_flag=True, help='Overwrite existing files') @click.option('--max-pages', type=int, help='Maximum number of pages to extract') def extract(dump_file: Path, output_dir: Path, force: bool = False, max_pages: int = None): """ Extracts Wikipedia articles from a dump file and saves them as individual files. Parameters ---------- dump_file : Path Path to the Wikipedia dump file. output_dir : Path Directory where the extracted files should be saved. force : bool, optional If True, overwrite existing files. Default is False. max_pages : int, optional Maximum number of pages to extract. If not set, all pages are extracted. Notes ----- Each extracted file contains a JSON metadata header followed by the article's mediawiki markup. The process may take significant time depending on the size of the dump and the number of pages. """ if not os.path.exists(output_dir): os.makedirs(output_dir) with open(dump_file, 'rb') as f: dump = mwxml.Dump.from_file(f) for idx, page in enumerate(tqdm(dump, total=5_691_832 if max_pages is None else max_pages)): if max_pages is not None and idx >= max_pages: break try: save_page(page, output_dir, force) except Exception as e: print(f"Error processing page '{page.title}': {e}") def list_paths_by_suffix(directory='.', suffix='.wiki'): """ Generator that finds all file paths with the given suffix in a directory. Parameters ---------- directory : str, optional Directory to search in. Default is the current directory. suffix : str, optional File suffix to search for. Default is '.wiki'. Yields ------ Path Paths to files with the specified suffix. """ path = Path(directory) for file in path.rglob(f'*{suffix}'): yield file namespaces = { 0: {'name': '(Main/Article)', 'type': 'subject'}, 1: {'name': 'Talk', 'type': 'talk'}, 2: {'name': 'User', 'type': 'subject'}, 3: {'name': 'User talk', 'type': 'talk'}, 4: {'name': 'Wikipedia', 'type': 'subject'}, 5: {'name': 'Wikipedia talk', 'type': 'talk'}, 6: {'name': 'File', 'type': 'subject'}, 7: {'name': 'File talk', 'type': 'talk'}, 8: {'name': 'MediaWiki', 'type': 'subject'}, 9: {'name': 'MediaWiki talk', 'type': 'talk'}, 10: {'name': 'Template', 'type': 'subject'}, 11: {'name': 'Template talk', 'type': 'talk'}, 12: {'name': 'Help', 'type': 'subject'}, 13: {'name': 'Help talk', 'type': 'talk'}, 14: {'name': 'Category', 'type': 'subject'}, 15: {'name': 'Category talk', 'type': 'talk'}, 100: {'name': 'Portal', 'type': 'subject'}, 101: {'name': 'Portal talk', 'type': 'talk'}, 118: {'name': 'Draft', 'type': 'subject'}, 119: {'name': 'Draft talk', 'type': 'talk'}, 710: {'name': 'TimedText', 'type': 'subject'}, 711: {'name': 'TimedText talk', 'type': 'talk'}, 828: {'name': 'Module', 'type': 'subject'}, 829: {'name': 'Module talk', 'type': 'talk'}, } def parse_extracted_article(info: dict, text: str) -> dict: """ Parses a Wikipedia article's text and metadata into a structured format. Parameters ---------- info : dict Metadata about the article extracted from the dump. text : str The raw mediawiki markup text of the article. Returns ------- dict A structured representation of the article, including sections, links, and categories. Notes ----- This function identifies redirects, parses sections, and extracts links and categories from the article. The output can be used for further processing or analysis. """ info['namespace'] = namespaces.get(info.get('info', {}).get('namespace'), {'name': 'Unknown', 'type': 'unknown'}) # Check if the article is a redirect t = text[:100].lower().strip() if t.startswith('#redirect') or t.startswith('#weiterleitung'): # Fast parsing using regex for redirects pattern = re.compile('\[\[(.*)\]\]') matches = pattern.findall(text) if matches: return { 'type': 'redirect', 'target': matches[0] } # Parse the mediawiki markup wikicode = mwparserfromhell.parse(text) # Extract sections sections = wikicode.get_sections(include_lead=True, levels=[1, 2, 3, 4, 5, 6]) res = { 'info': info, 'type': info['namespace']['name'], 'title': info['title'], 'sections': [], 'categories': [], 'type': 'article' } seen_links = set() for idx, section in enumerate(sections): section_info = { 'idx': idx, } headings = section.filter_headings() if headings: heading = headings[0] section_info['title'] = str(heading.title) section_info['level'] = str(heading.level) elif idx == 0: try: section_info['title'] = str(section.nodes[0].contents) res['title'] = section_info['title'] except: section_info['title'] = 'Introduction' section_info['level'] = 1 for link in section.filter_wikilinks(): seen_links.add((str(link.title), str(link.text) if link.text else None)) section_links = [{ 'target': str(link.title), 'text': str(link.text) if link.text else None, } for link in section.filter_wikilinks()] html = '' try: html = str(mwcomposerfromhell.compose(section)) except: pass res['sections'].append({ 'section': section_info, "html": html, "wiki": str(section), "links": section_links }) links = [] for link in wikicode.filter_wikilinks(): links.append((str(link.title), str(link.text) if link.text else None)) article_links = set(links) - seen_links res['links'] = links res['non_section_links'] = sorted(article_links) res['categories'] = [] for link in links: link, _ = link if ':' not in link: continue link_type, target = link.split(':', 1) if link_type.lower() == 'kategorie': res['categories'].append(target) return res def parse_extracted_article_path(article_path: Path, articles_dir: Path, output_dir: Path, force=False): """ Parses and saves a structured JSON from an extracted article file. Parameters ---------- article_path : Path Path to the extracted article file. articles_dir : Path Directory containing the extracted articles. output_dir : Path Directory where the parsed JSON files will be saved. force : bool, optional If True, overwrite existing files. Default is False. Notes ----- The main logic is handled by `parse_extracted_article`, while this function manages file input/output. """ text = article_path.read_text() target = output_dir / article_path.relative_to(articles_dir) if target.exists() and not force: return info, text = text.split('\n', 1) info = json.loads(info) res = parse_extracted_article(info, text) target.parent.mkdir(parents=True, exist_ok=True) with open(target.with_suffix('.json'), 'w') as f: json.dump(res, f, indent=2) def __parse_extracted_article_path_wrapper(args): """ Wrapper for multiprocessing to handle argument unpacking. Parameters ---------- args : tuple Arguments for `parse_extracted_article_path`. Notes ----- This wrapper is necessary for multiprocessing pool map, as it only handles one argument. Lambdas can't be used with multiprocessing because they are not picklable. """ try: article_path, articles_dir, output_dir, force = args return parse_extracted_article_path(article_path, articles_dir, output_dir, force) except Exception as e: print(e) def augment_iterator(it, *args, max_articles=None): """ Augments an iterator with additional arguments for parallel processing. Parameters ---------- it : iterable The original iterator. *args : any Additional arguments to append to each item. max_articles : int, optional Maximum number of items to yield. If None, yield all items. Yields ------ tuple A tuple where the first item is from the original iterator, followed by the additional arguments. """ for idx, e in enumerate(it): if max_articles and idx >= max_articles: break yield (e,) + args def _process_articles_in_parallel(articles_dir: Path, output_dir: Path, max_articles=None, force: bool = False, processes=3): """ Processes articles in parallel, parsing them into structured JSON files. Parameters ---------- articles_dir : Path Directory containing the extracted article files. output_dir : Path Directory where the parsed JSON files will be saved. max_articles : int, optional Maximum number of articles to process. If None, process all articles. force : bool, optional If True, overwrite existing files. Default is False. processes : int, optional Number of parallel processes to use. Default is 3. Notes ----- This function uses a multiprocessing pool to parse articles concurrently, improving efficiency on large datasets. """ article_paths = list_paths_by_suffix(articles_dir, '.wiki') article_paths = augment_iterator(article_paths, articles_dir, output_dir, force, max_articles=max_articles) total = max_articles if max_articles is not None else 5273102 with Pool(processes=processes) as pool: list(tqdm(pool.imap_unordered(__parse_extracted_article_path_wrapper, article_paths), total=total)) @cli.command() @click.argument('input_dir', type=click.Path(exists=True, path_type=Path, dir_okay=True, file_okay=False)) @click.argument('output_dir', type=click.Path(exists=True, path_type=Path, dir_okay=True, file_okay=False)) @click.option('--max-articles', type=int, help='Maximum number of articles to process') @click.option('--processes', type=int, default=3, help='Number of processes to use') @click.option('--force', is_flag=True, help='Overwrite existing files') def parse(input_dir: Path, output_dir: Path, max_articles: int = None, processes: int = 3, force: bool = False): """ Parses extracted Wikipedia articles into structured JSON files. Parameters ---------- input_dir : Path Directory containing the extracted articles. output_dir : Path Directory where the parsed JSON files should be saved. max_articles : int, optional Maximum number of articles to process. If None, process all articles. processes : int, optional Number of parallel processes to use. Default is 3. force : bool, optional If True, overwrite existing files. Default is False. Notes ----- The resulting JSON files contain metadata and structured content like sections, links, and categories, making them easier to work with in downstream tasks. """ if processes < 1: import multiprocessing as mp processes = mp.cpu_count() articles_dir = Path(input_dir) output_dir = Path(output_dir) output_dir.mkdir(exist_ok=True, parents=True) _process_articles_in_parallel(articles_dir, output_dir, max_articles, force, processes) if __name__ == '__main__': cli()
Monday, 2 September 2024
Parse Wikipedia dump
Subscribe to:
Posts (Atom)
Parse Wikipedia dump
""" This module processes Wikipedia dump files by extracting individual articles and parsing them into a structured format, ...
-
Der Kollektivgeist: Ihr intelligentes Unternehmensgedächtnis Wissen aus den Köpfen der Mitarbeiter extrahieren - Die ...
-
docker pull quay.io/unstructured-io/unstructured-api 20gb image. After docker-pull: docker image inspect --format '{{json .}}' ...